
Executable Model Ontology
for Temporal Intelligent Organizations

in Network Systems

Orientation by David Aveiro

Universidade da Madeira

Abstract. This doctoral project aims to create a paradigm shift[1] on software
development by developing the theory and the methodology that allows devel-
oping software with one order of magnitude less effort and with over one order
of magnitude of perceived improvements, on the combination of interfaces, ex-
ecution time and interoperability. The candidate foresees the path for this goal
by being able to build a simple executable model, based on a theoretical solid
ontology, from which we can generate code automatically into fully working
applications. The belief that this can be achieved is based on the professional
experience over the last 16 years, where the author acquired experience with the
development of code generation tools in its own software company for the de-
velopment of applications for small enterprises. This doctoral project is in its
starting stage.

Keywords: code generation, system ontologies, model driven applications, data
object model

1 Introduction

This doctoral project aims to create a paradigm shift [1] on software development
by developing the theory and the methodology that allows developing software with
one order of magnitude less effort and with over one order of magnitude of perceived
improvements, on the combination of interfaces, execution time and interoperability.
Therefore this project’s main goal is to create a “Silver Bullet”, as defined in 1987 by
Frederick P. Brooks, in the classic paper “No Silver Bullet: Essence and Accidents of
Software Engineering” [2] with the interpretation given in the preface of [2a].

The candidate foresees the path for this goal not by building increasingly complex
systems that rely on bigger and more complex libraries, packages or frameworks, but
the other way around – being able to build a simple executable model, based on a the-
oretical solid ontology, from which we can generate code automatically into fully
working applications.

The belief that this can be achieved is based on the professional experience over
the last 16 years, where the author acquired experience with the development of code
generation tools in its own software company for the development of applications for
small enterprises. The author has built several versions of a proprietary code genera-
tion tool to develop Borland Delphi applications (1997-2002) and web based applica-
tions (2000-2013) with HTML, MySQL, PHP, javascript and jQuery.

From that experience emerged the need to conceptualize an ontology that would
enlarge the domain of applicability of code generation tools from database oriented

applications into more generic and powerful software applications. The new ontology
should handle subjectivity, flexibility and the need for handle change in software. By
handling change we mean the ability to fully customize generated code over time with
minimal code written, but also get back to the ontological model, change it and regen-
erate code without losing the previous customizations and with bounded impacts on
the application with the purpose of minimizing the development and maintenance
costs.

The new ontology has to appropriately manage the structural business logic, in-
cluding both the fundamental core ontological aspects and the operational aspects, us-
ing the consistent principles uphold by Enterprise Engineering.

The grail of executable models would be a system that would be able to comply
with all of the following demanding requirements:

• Handle any amount of data, of any type, and either centralized or distributed
way over a network.

• Handle any number applications that have private data but also shared data
providing integration channels with other applications, sometimes with real
time requirements.

• Handle any number of stakeholders interacting with the system in different
locations through different devices, some of them simultaneously (handling
for example, battery constraints, variations on communication throughput,
latency or jitter, less memory, less disk space, less parallel computation pow-
er, faster results with less precise results).

• Continuously improve performance by increased knowledge about the appli-
cation and its users.

• Support the strategy pattern to allow multiple algorithms over the same com-
plex data structures.

• Handle broad programming challenges by supporting multi-paradigm pro-
gramming, logic programming and probabilistic programming.

• Handle code as normal data. Allow code transfer besides the usual data trans-
fer, allowing code to be executed locally or remotely transparently regarding
on the best interest of the system.

• Remember everything (events, facts and values) that happened in the appli-
cation, unless instructed to forget.

• Perform forward inference over events to provide in time analysis and allow
temporal analysis for specified or implicit/typical time ranges.

• Allow to travel in time in the system, that is, perform (data, code and event)
as if the system was in a certain date in the past to perform analysis scenar-
ios.

• Allow to replay events up from a certain point in time in the past and check
for differences between scenarios.

• Allow periodic code re-generation based on the new versions of used func-
tions and overtime compile to memory for finding optimization in the func-
tions where specific patterns in input parameters justify the optimization ef-
fort.

2 Software development still in trouble

After 60 years of software engineering, almost no software version passes the
teenage years, independently of the amount of money, expertise or effort that was put
into creating them. Any software project sponsor still faces a new project with a high
associated risk of success.

In “Peopleware” [3] the authors of this classic book from 1999 state that “about
15% of all projects studied (…) were canceled or aborted or postponed or they deliv-
ered products were never used. For bigger projects the odds are even worse. Fully
25% of projects that lasted 25 work-years or more failed to complete.”

The current reference source of success analysis of software projects is the
CHAOS Manifest [4] from the Standish Group. The 2011 reports states that, although
it was their best result ever, only 37% of software projects could be considered a suc-
cess; 21% were clear failures and the remaining 42% were challenged. The funda-
mental problem didn’t change – building software is still hard and challenging.

As time passes by we are getting better at building software, but we are still far
from acceptable project success numbers when compared to other areas of engineer-
ing. Some argue that the methodologies, paradigms and tools we use today in soft-
ware development are fine for small projects, but we still lack the knowledge about
how to scale up to huge projects, because of specific problems that arise in such high-
ly complex assembles. This is a topic that deserves more research in order to over-
come those specific difficulties.

3 Building software

The ultimate goal of building software is to help users to be better by deciding,
producing, consuming and remembering better. Being humans we have flaws in our
judgments. Science has studied many cases of our biased decisions [5].

Most of our daily decisions are based on simple rules that are really just simple
models. Probably the most common model of them all is to copy what others are
choosing as decision criteria – there is safety in big numbers. But in the future, people
will rely more on software tools to better model the world, be able to make informed
and rational decisions (unbiased) and, in time, become better than our nature.

Building software, big or small, is about creating models of reality. Every model is
a simplification, so a lot is lost in the modeling process. A software model is useful
for analyzing the current state of the world by querying or viewing synthetic reports,
for predicting the future or retrodicting (predicting the past).

Models represent worlds that can be continuous or discrete. Actions performed can
deterministic or stochastic, that is, unpredictable – especially if the model does not
take account with all possible actions that are happening in the world. Information
about the world might not even be available (or with the required precision). The roles
of the several agents in the world can differ and change over time from collaborative
mode to adversarial or even irrelevant interaction.

4 The essential problems of software

According to Frederick Brooks [2], “the essence of a software entity is a construct
of interlocking concepts: datasets, relations among data items, algorithms, and invoca-

tions of functions.” This author also states that the essential attributes of software that
make them so challenging are: complexity, conformity, changeability and invisibility.

3.1 Complexity
Allen B. Downey [6] states that “classical models of science tend to be law-based,

expressed in the form of equations and solved by mathematical derivation. Models
that fall under the umbrella of complexity are often rule-based, expressed as computa-
tions, and simulated rather than analyzed.”

According to that author, with the usage of computational modeling there has been
a shift along the following axis from:

• continuous to discrete
• linear to non-linear
• determinism to stochastic (random, non-deterministic)
• abstract to detailed
• one, two (few) elements to many elements
• homogeneous to composite (heterogeneous)
This new kind of model is often appropriate for different purposes and interpreta-

tions of the world.

• From predictive to explanatory

Many social phenomena’s can be explained by simple models like the Schelling’s
model of segregation, the standing ovation model by Miller and Page’s or the thresh-
old models of collective behavior by Mark Granovetter.

• From realism to instrumentalism

As George Box said it: “All models are wrong, but some models are useful.”

• From reductionism to holism

Reductionism approach is based on the premise that you can only understand the
system when you understand each of its parts. Holistic is the view that some phenom-
ena only appear at the system level and do not exist or appear at the components level.
This is also related to the philosophical approach of considering a system in a teleo-
logical perspective, that is, considering their use, end and purpose, contrasting with
the ontological perspective that focus on the elements that constitute the system, their
interconnections, relations, groups, similarities and differences.

According to Downey, this changes may lead to a new kind of engineering and or-
ganization of social systems from:

• centralized to decentralized
• isolation to interaction
• one-to-many to many-to-many
• top-down to bottom-up
• analysis to computation
• design to search
And finally, to a new kind of thinking, from:

• Aristotelean logic (only true or false) to multivalent, fuzzy logic
• frequentist probability to Bayesianism

• objective (objectivists – only a single truth exists) to subjective (subjectivists
– each person can hold a different truth - or constructivists – truths are established
trough social interaction)

• physical law to theory to model
• determinism to indeterminism (breaking the cause-effect link through ran-

domness, probabilistic causation and fundamental uncertainty)
A complex model is not necessarily a better one; actually it is usually the opposite.

Albert Einstein said: “Things should be as simple as possible, but not simpler.”

3.2 Conformity
The problem of conformity arises from the need to interact with other existing sys-

tems, and usually not very organized ones.

Systems are used throughout science extensively and by definition systems interact
with each other. Systems are normally conceived as something that has an input, an
internal structure and an output. According to the ontological approach for systems, as
defined by Mario Bunge and Jan Dietz [7], a system has:

• Environment – a set of elements that live on the border of the system com-
municating with the exterior (either input or output).

• Composition – a set of elements that live inside the system and only commu-
nicate between themselves and the elements in the ambient.

• Structure – links of mutual influence between elements of the ambient and
the composition.

• Production – things that are produced by the elements of the composition
and delivered to the outside through the elements of the ambient. The production of a
system can be a product (material), a result (immaterial) or a service (a mix of materi -
al and immaterial goods provided instantly or over time).

Conformity is a major issue in software development. Software developers need to
find ways that systematically address the problems of interfaces between systems.
Having a well defined but rigid API is not a good enough solution. The most likely
solutions is to address this issue through patterns, like the facade pattern, or even bet-
ter, through pattern languages that combine typical usages of known patterns to ad-
dress typical concerns with typical results in terms of non functional characteristics.

3.3 Changeability
As time passes by, people wish to reflect change in their software, but that is chal-

lenging and leads to maintenance problems. This aging effect on software was ad-
dressed by the Lehman’s Laws of Program Evolution Dynamics [8].

Implementing an architecture that is able to handle change is a huge effort that only
pays off in the long run, but on the other hand, having software with a short lifespan
decreases its economical viability. We need to find a way to build faster, better and
cheaper software that can handle change.

A possible way to tackle the changeability problem is building software bottom-up
using normalized systems [9]. This theory states that software handles only two tech-
nology independent, primitive entities: data and action.

• Data entities only hold data, without any outside clue on the format in which
it is stored and without any associated methods (like in object oriented classes), ex-
cept for the basic getters and setters methods. A data entity can contain structured in-

formation like in a structure or record, and can also point to other data entities. All
references to data entities have a clear reference to the applicable version.

• Action entities can only contain a single task in normalized systems, that is,
it only does one simple thing, although the programmer can decide on the granularity.
By separating tasks into different actions we separate concerns. Actions can be hierar-
chical and include calls to other actions. They use data entities as input and produce
data entities as output. All action entities have a reference to the applicable version.

3.4 Invisibility
The challenge of invisibility comes from the fact that software is an abstraction

that is not tangible. Information visualization of code execution is quite challenging
because it is not easy to map data sets to visual encoding. This process of data encod-
ing consists of classifying data types and choosing the most appropriate visual at-
tributes to represent them.

The first problem is data types. Computer’s hardware and software typically repre-
sent data as booleans, integers (signed or unsigned) or floating points (with a specific
precision and range set). This is quite different from the way mathematicians usually
classify data (Natural, Integer, Rational, Real, Complex, etc).

On the other hand, statisticians and data scientists typically use only three basic
data types [10]: nominal (categorical), ordinal (when we can establish an order be-
tween categories) and quantitative. Quantitative can be split in interval and ratio

According to the French cartographer Jacques Bertin (1967) [11] there are 7 visual
attributes that can be used for visualizing data, for 0, 1 or 2 dimensions: position, size,
value (or lightness), texture, color, orientation and shape. Later, in 1999, this attribute
list was extended to 3 dimensions by Card, Mackinlay & Shneiderman [12].

When a programmer writes code he does not have a clear relation to any physical
objects. Software could be mapped to a visual representation of code in order to make
it more understandable and therefore with fewer bugs.

5 Ubiquitous Organizations

Organizations are ubiquitous and complex social constructions, that can have many
forms. We were used to think on organizations as big and well organized structures
like businesses, hospitals and factories. Organization theory [13] has evolved to
broaden the concept of organizations to include “groups (social structures) whose
members coordinate their behavior in order to accomplish shared goals or to put out a
product”, service or value. With this definition, a group of young people organizing
an event through a social network is an organization. Richard Scott [13] argues that
organizations can be: rational systems (with collective goals and formalized
structure); natural systems (with individual goals but interested in the perpetuation of
the organization to achieve them) or open systems (no structure or roles, but flows of
interdependent activities with “shifting coalitions of participants”).

For many years software engineering has followed the path of building software as
a well organized structure. Due to its complexity and stakeholders pressure to change,
software development has been shifting toward agile methods that favor gradual
growth instead of the “big design up front” approach. Organizations that are natural
systems and open systems still don't have the software applications that allow them to

better handle their natural ambiguity and in time gradually become better organiza-
tions. On the other hand, structured organizations that are based on rational systems,
have difficulties in rapidly adapting to change, because their information systems are
hard to adapt and evolve.

6 TOPO – Global Vision

In order to initiate this project the author initiated the development of a platform
called TOPO, which stands for stands for Transparent Open Platform for Ontologies.
At this stage the author is developing the ontology for TOPO.

TOPO aims at being transparent in the sense that it promotes a white-box [7] mod-
eling engineering approach to the development of information systems, that is, a con-
struction combining elements into more complex structures, taking measures [9] to
control the combinatorial explosion and the consequent increase of entropy that can
arise from that construction as it has to be changed over time [14].

TOPO has the goal of being open in the sense that all elements of its structure are
open to be used and improved by the community.

TOPO will be a platform because it aims to provide a set of shared components
and a wide range of non-functional requirements to allow the easy construction of a
family of applications. Applications generated by TOPO will support social interac-
tions of actors as described in DEMO theory [7].

In TOPO, users and applications will keep the power of initiative to communicate
with others whenever they want. TOPO is not a framework since it does not imple-
ment the typical inversion of control present in frameworks, by relying on callbacks,
and using the Hollywood paradigm [7]: don’t call us, we will call you.

Since TOPO aims to being implemented as an information system artifact, some
premises must be stated about the environmental context in which it would operate:

• TOPO is the core of a layered architecture composed by applications, agents,
interfaces and persons assembled as can be seen in figure 1.

• Persons can use several interfaces simultaneously to interact with several
TOPO applications through an agent.

• Each person has a corresponding agent that represents the person in the sys-
tem, although agents only perform actions in behalf of persons when previously au-
thorized. The responsibility of actions is always of a person.

• TOPO implementation will be user interface independent and all communi-
cations with the interfaces will happen through message exchange.

• TOPO implementation will be in the cloud, although interfaces may keep
some cached data.

• TOPO will work over the Internet with multiple devices as view/controller,
either browser or mobile device interface (e.g. Android).

• All actors will use message exchange as communication paradigm.
• TOPO will have a maximum response time for each API, otherwise promise

a response for later.
• TOPO applications will share common data, but can also have private data

for each user/application.

• There will be an integration API for sharing data with external systems. The
integration will be performed by a specialized agent.

Figure 1 – TOPO layered approach

7 Ontological aspects of TOPO

7.1 General Description
DEMO methodology[7] describes the world using transactions. Each transaction can
be initiated by a set of roles, but is executed by a specific role. A ontological transac-
tion follows a universal pattern with the sequence of coordination acts request (by re-
quester), promise (by executor), state (by executor) and accept (by requester), com-
plemented with cancellation of previously taken acts in the sequence. The executor of
each transaction also performs a production act (execute) between the coordination
acts of promise and state. Transactions at certain acts can initiate other transactions
and have dependencies on another transactions. These dependencies are specified in
action rules, one for each act in each transaction.

In DEMO methodology there is also a State Model where concepts are connected to
other concepts through relationships, and properties are associated to each concept.

7.2 Automata for representation of the Action Model
TOPO will represent a DEMO ontology using a system – that gets some input, per-
forms some actions (either automatically or performed by humans) and produces
some data outputs. Notice that the final result of the system is an ontological system.
For each act (coordination or production) there is a corresponding action rule. Each
action rule is defined as a finite automata where each node corresponds to a task.

Tasks can be of several types (infological or datalogical), that can be either automatic
or require human intervention. For example, tasks can include predefined querying
some data from the database, flexible querying on the database based on user options,
showing some data to the user, requesting some input data from the user, validating
input data, storing data, requesting data from web service, etc. All these acts are per-

formed in order for the user to be able to perform the ontological act with the all the
available information.

Based on the automatic categorization from similar situations that TOPO should be
able to manage, a set of likely data requests should be made available for the case the
user might use them. Actual usage should be recorded, as well as new queries to be
used as reference for future cases.

7.3 Interface aspect of Tasks
For each task that interacts with the user there is a corresponding interface fragment
that can be automatically generated based on the required input data, but can also be
fully customized to adapt to specific visualization or data input requirements.

Several interface fragments can be combined in a single user interface, depending of
the options and constraints of the device being used.

A task and the corresponding interface fragment can be shared by several actions.

From the authors experience with the code generation tool, a group of 125 types of
user interface fields have been identified with the corresponding view, edit and search
alternatives. In future research they will be synthesized and patterned.

The arrows in the finite automata correspond to possible actions either automatic (like
in the case of if, while, foreach control structures) or requiring user decision when ex-
plicit decision is required.

7.4 Agents with mandates
In TOPO, besides actor roles, there are also users, agents and functions. As presented
in section 6, agents are the singleton representatives for users, which can perform ac-
tion on their behalf when properly authorized to do so (mandate).

Agents perform coordination acts by sending messages to each other through the
specified roles. For each role there are queues (implemented with sequences) and
those authorized to perform a certain actor role can view and/or consume the mes-
sages in the queue.

7.5 Organizational functions
Functions, correspond to organizational roles. TOPO will allow a flexible authoriza-
tion structure specifying which persons are associated to which functions and which
of these can fulfill which actor roles.

Functions also perform a crucial role in the delegation, as persons can delegate within
the organizational hierarchical functions to perform either production acts, coordina-
tion acts or both (with or without reporting back to the delegate on performed acts).

Delegation can also be performed by elements that are not in the same hierarchical
chain, or even in the same organization. Additional thought should be invested in this
area to understand if and how control mechanisms can be implemented for these spe-
cial cases of delegation.

8 Complementary elements

8.1 Neuron Model
Concepts can be connected with a neuron like structure. In a simple model, a neuron
can be represented with a central body called soma, a tree of dendrites that act as in-

put channels and axon as output channel. If we consider each neuron to be a fact, then
dendrites could connect to a arbitrary number of who's, what's, where's, etc. Branches
in the dendrite tree can have connections that act as suppressors. This analogy is par-
ticularly useful because it can model any boolean expression made up of and's, or's
and not's, as it has been shown in neural science.

Neuron model is particularly useful for data retrieval within contexts – the small
worlds in networks. If we have a set of fully energized neurons as our current context,
it could be possible to energize the structural elements connected to those neurons
(who, what, why, when, where, how). Then it would be possible to compute how cor-
related are other neurons by the level of energy they are getting in their dendrites, and
realizing not only the similarities, but also the differences between those new neurons
with the one in the current context. In turns it would be possible to join some of those
new neurons to the current context and repeat the process, as long as desired. This
model of retrieval of information is, in simple terms, the way Antonio Damásio [15]

proposes as the way memory works in human minds.

8.2 Zachman Framework dimensions
Zachman Framework dimensions are the elements (who, what, why, when, where,
how). These elements are very commonly known as they are the basis for the con-
struction of news.

In TOPO, a “who” can be a “person”, an “organizational unit” or a “role”. A “role” is
a generalization of a “person” to allow it to be performed by more that one person
over time. “Organizational units” can be arranged hierarchically with great flexibility
using the “part-of” structural construction. A person with authority to do so, can link a
“person” to a “organization unit” (“part-of”) or a “role” (“instance-of”) with certain
mandatory start instant and eventually a end instant. It is also possible to link an “or-
ganization unit” to a “role” with the operation “instance-of”.

Elements in “what” are the most complex and versatile element in an ontology defini-
tion. Here, artifacts are created and structural relationships are established in order to
construct systems, data structures, languages and whatever is required to model the
intended application.

A “why” is a tree of “reasons”. For each reason we repeat the question “Why?” until
nothing else can be said other that a fundamental value that does not need further jus-
tification. Therefore, the “why” can be represented as a three where the branches have
“purposes” in free text, and each leaf is a “value”.

In the modeled processes of an organization, the values are built in on the construc-
tion of the systems, and do not need to be expressed while in operation. However,
when unexpected things happen and decisions have to be taken, values can help to
choose the right track among different courses of action, according to what the com-
pany has set as their core values and strategy, and also according to value conditions
or restrictions that influenced process design at the respective organizational change
context. [16]

The dimension “when” handles time references (moments and recurring periods) and
time ranges. Time is one of the most problematic topics because society does not use
a good model to handle time, since we have multidimensional layers with great level
of ambiguity and inconsistencies.

The dimension “where” is a controlled vocabulary that can reference to many spaces,
either in absolute terms of in relative terms. Unlike time, there are very well estab-
lished systems for coordinates (Cartesian, polar) and available tools to use these sys-
tems, even in mobile equipments. A location can be set using a global coordinate sys-
tem (absolute) or a local one using objects or earth magnetic field to establish coordi-
nates.

The dimension “how” can have multiple interpretations, either using action rules pre-
viously described; or in a functional perspective of social decomposition of activities
in textual form.

8.3 Metadata
Metadata is usualy described as data about data, but what is metadata for some might
be raw data on which others would like to build upon. In TOPO all data is metadata.

There are 3 types of metadata: descriptive (that tells features about a “thing”); struc-
tural (that says how “things” are connected to other “things”) and administrative
(that tells who has rights about each piece of data and how that data was formed
(provenance) and how it should be kept – for how long, how and by whom.

Descriptive metadata will be added to any concept in TOPO. Every descriptive meta-
data is a stored as a fact that links: a) the concept being described; b) the value (that is
also a concept); c) a predicate (not mandatory) stating the type of description being
made – also a concept; d) a unit of measure that is only required for interval values
(not mandatory); e) the error associated with the measurement (not mandatory), only
for ratio types of data and by default in the middle of one order or magnitude below
the measurement.

The predicates to be used should, as far as possible, be one of the 15 basic types of
Dublin Core [17] or one of its extensions, in order to facilitate future semantic integra-
tion between ontologies.

The structural metadata is used to establish fundamental relationships between data. A
lot of work has been done in identifying the properties of structural relationships be-
tween concepts in foundational ontologies, namely in [18] and [19]. Therefore we will
just mention some of its elements and rely further analysis to the references and to
further work. In general, structural relations are established between individuals, col-
lections and the universal set of values. Some examples of structural relations are: in-
dividual part-of individual; individual instance-of universal; individual member-of
collection; universal is-a universal (taxonomic inclusion); universal partonomic-inclu-
sion-of universal; collection extension-of universal; collection partonomic-inclu-
sion-of collection; collection partition-of individual.

Unlike descriptive and structural metadata, administrative metadata on TOPO will be
mostly automatically collected by the system using default options and current con-
text, although the user can change it later on. Administrative metadata will be stored
using neuron model and the Zachmann Framework dimensions and using, as much as
possible the semantics of Dublin Core and its extensions, as well as the advancements
in provenance of digital documents from information science [20], [21].

TOPO will use the paradigm of no raw data deletion, that is, all raw data is stored
with timestamps (administrative metadata) and future changes to data are stored as
new facts with newer timestamps. Those facts are never deleted to allow time travel,

scenario testing and replay. There are always some time references that create forward
inferences and data snapshots of the state of the world, for example, in the start of
each day of current and last week, start of each weeks of current and last month, etc.

9 Incremental formalization – putting it all together

The purpose of this section is to show how all concepts previously shown can be
joined together in order to provide user with a way to incrementally formalize the in-
formation's system for its organization. This formalization can happen in a sequence
of simple steps.

Following the general idea that software for organizations should grow in an incre-
mental way instead of being build upfront, lets image that there is a client and a
provider selling lemonade at the door step with delivery to the clients location.

1. No formalization
In the beginning there is no formalization. The client send messages (personally, or
throw email, sms, social network, etc.) to the provider and the provider handles each
request (delivering the lemonade himself or with the help of the assistant) without any
formalized process. Requests, promises, execution, statement and acceptance are done
informally. The provider has only one single transaction to execute: manage mes-
sages. Each request is handled differently depending of the request being made. No
records are kept.

2. Joining dimensions
Assuming that the provider is using TOPO, he can start using the Zachman Frame-
work dimensions, described in section 8.2, to take notice of simple facts in each mes-
sage he receives from clients, and mark small portions of it as pieces of information
just stating the dimensions: who, what, where or when. With this information's ,
records can be kept. There can be many instances of the same dimension in the same
message. It's as if the client was using colorful markers to mark certain parts of the
message.

The provider does not have to provide any additional information, although some
notes may become handy in each association.

3. Neuron Model usefulness
Each relation between the dimensions of Zachman framework an a message (or part
of it) is stored using the neuron model described in section 8.1.

With this primitive data system within TOPO, the provider can perform simple search
based on a time line (when), on a map (where), on a person or organization (who) and
on assets names (what). We are assuming that TOPO is smart enough to: understand
references to dates, knowing the present date and understanding the text; use con-
trolled vocabularies for locations differentiating geographical locations from logical
ones (within the organization); group names by similarity and parts of names. Names
of assets are more difficult to handle at this stage, but they can be handled as tags.

Even with this very primitive information system, automatic data mining is already
possible since when is a interval type of data and all the others are categorical data.
Therefore it is possible to count how many times a clients performs orders, from
where and detailed analysis on when.

4. Creating attributes
As business flourishes, the provider may feel the need to set roles for specific dimen-
sions, namely create specific tags for each product being sold, since now the provider
sells a large set of natural juices. He may need to record the request time, delivery
time, request location, delivery location, etc. He may even need to identify which
client is the payer, the chooser, the receiver, the beneficiary, the influencing persons to
buy, etc.

5. Creating concepts
At some point in time, organizing all information around the order message is no
longer the most efficient and logic way to proceed since there is too much repetition
of data. There is the need to add concepts: client, delivery location, resources (fruit,
water, sugar), equipments, etc.

However, TOPO still allows the user to freely associate as many Zachman dimensions
as needed to each record of each concept. Keeping this flexibility allows to still have
the benefits described in steps 2-4, even for the new concepts.

Some typical concepts in organizations should be used, for example for handling or-
ganization internal structures (for example: delivery boys; financial manager).

6. Setting data types and constraints
In order to prevent data records with invalid data, some field may require to set a list
of possible values (for example: no juice deliveries after 10pm). Some, might even be
associated with controlled vocabularies defined by the user. Some attributes may be
marked as mandatory (items in order and amount), others as recommended. These
constrains of possible values can be formalized as new concepts called types.

In TOPO concept types are described using the descriptive metadata structure de-
scribed in section 8.3. They allow to name an attribute, constrain possible values (ei-
ther categorical, ordinal, interval and ratio), describe it, associate a unit of measure
(for automatic conversion) and an associated error in measurements (for error propa-
gation calculus).

Numeric attributes are the usual victims of constrains since they are more prone to er-
rors and more difficult to detect and have more variants on format and usage.

With concepts, attributes and types we have the usual building blocks normally used
in developing software. Notice that with these new information a wider range of data
mining can now be performed automatically. Many patterns should be provided by
TOPO in order to facilitate creation and transformation of structural metadata.

7. Creating structural relationships between concepts
With the new concepts and attributes comes the need of structural metadata, described
in section 8.3. Structural meta-data allows to model in TOPO UML or ER or State
Model from DEMO. For example: a Client can have several typical delivery loca-
tions.

By supporting all types of structural relationships according to some foundational on-
tologies, the authors expect to provide a more powerful solution than the common
ones. This shall be addressed in future work.

It should be possible to add, remove and transform concepts, attributes and their
structural relationships over time with bounded effects, as prescribed by normalized
systems. This shall be addressed in future work.

8. Formalizing and structuring transactions
DEMO methodology introduces a pattern of coordination acts and the ability to set
dependencies between transactions on certain coordination acts, as described in sec-
tion 7.1. For example, creating a payment transaction, an outsourced delivery transac-
tion, etc.

TOPO will not commit to a unique possible pattern, as some difficult issues still exist
like the need for the client to be the initiator of the transaction, the difficulties in the
integration of infologic and datalogic transactions in the ontological pattern, the han-
dling of delegation and the handling of discussion states after cancellations.

9. Formalizing tasks in the action model
Organizations have to adapt to circumstances in a rapid changing environment. There-
fore users with the appropriate level of responsibility should be able to modify the
tasks of a specific action model. This should allow formalizing what should be done
typically, what should be checked for a set of criteria. But it should also be override
by a responsible person that is able to evaluate that a different procedure is better suit-
ed for that situation.

The neuron model can by used to setup boolean expressions or even serve as basis for
neural networks to classify clients and business opportunities based on passed experi-
ences.

10. Automatizing steps
The final steps consists on persons delegating some responsibilities on software
agents (more or less intelligent) that act on the persons behalf.

Analysis
The usual way software is developed today is jump directly to steps 5 to 7 – restrain-
ing fields and data types, and concepts to hold them. Most of the times software de-
velopment doesn't support transactions at its full extent (steps 8-12), but also blocks
the possibility to store non structured information, as in steps is defined in steps 2-4.

In the authors opinion this lack of flexibility creates more pressure to change software
as all small (even if infrequent) differences from the expected path creates a barrier
for the users because they normally do not allow any walk around solution.

10 Conclusion

This project is in its initial steps. The author have chosen an incremental and bot-
tom up approach, so that implementation can take place with a realistic scope and, at
first, simple ontologies could be generated into working prototypes.

Certainly many constraints and insights will come up from the future steps of spec-
ifying concepts and implementation aspects taking in account all the dimensions, con-
cepts and innovative ideas presented in this document, that will lead to a creation of a
theory and a methodology for developing software.

References
[1] Kuhn, T. S. (1996). The structure of scientific revolutions . University of Chicago
press.
[2] Brooks Jr, F. P. (1987). No silver bullet-essence and accidents of software engi-
neering. IEEE computer, 20(4), 10-19.
[2a] Brooks Jr, F. P. (1995). The Mythical Man-Month, Anniversary Edition: Essays
on Software Engineering. Pearson Education.
[3] DeMarco, Tom, and Timothy R Lister. 1999. Peopleware: productive projects and
teams. New York, NY: Dorset House Pub.
[4] http://www.standishgroup.com/chaos_news/newsletter.php?id=54
[5] http://en.wikipedia.org/wiki/List_of_biases_in_judgment_and_decision_making
 http://www.ted.com/talks/tali_sharot_the_optimism_bias.html
 http://www.ted.com/talks/dan_ariely_on_our_buggy_moral_code.html
[6] Downey, A. B. (2012). Think Complexity: Complexity Science and Computation-
al Modeling. O'Reilly.
[7] Dietz, J. L. G. (2006) Enterprise Ontology-Theory and Methodology.
[8] Belady, L. A., & Lehman, M. M. (1976). A model of large program developmen-
t.IBM Systems Journal, 15(3), 225-252.
[9] Mannaert, H., & Verelst, J. (2009). Normalized systems: re-creating information
technology based on laws for software evolvability.
[10] Course Introduction to Data Science – Cecilia Aragon - University of Washing-
ton (May 2013) https://www.coursera.org/course/datasci
[11] Bertin, J. (1983). Semiology of Graphics, 1967.
[12] Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in informa-
tion visualization: using vision to think. San Francisco, Calif.: Morgan Kaufmann
Publishers.
[13] Scott, W. R. (1981). Rational, natural, and open systems.
[14] Lehman, M. M. (1996). Laws of software evolution revisited. In Software
process technology (pp. 108-124). Springer Berlin Heidelberg.
[15] Damasio, A. (2012). Self comes to mind: constructing the conscious brain. Ran-
dom House Digital, Inc..
[16] Pombinho, J., Aveiro, D., & Tribolet, J. (2012). Towards Objective Business
Modeling in Enterprise Engineering–Defining Function, Value and Purpose. InAd-
vances in Enterprise Engineering VI (pp. 93-107). Springer Berlin Heidelberg.
[17] http://dublincore.org/
[18] Bittner, T., Donnelly, M., & Smith, B. (2004, November). Individuals, universals,
collections: On the foundational relations of ontology. In Proceedings of the Third
Conference on Formal Ontology in Information Systems (pp. 37-48).
[19] Guizzardi, G. (2005). Ontological foundations for structural conceptual models.
CTIT, Centre for Telematics and Information Technology.
[20] Simmhan, Y. L., Plale, B., & Gannon, D. (2005). A survey of data provenance in
e-science. ACM Sigmod Record, 34(3), 31-36.
[21] Moreau, L., Freire, J., Futrelle, J., McGrath, R. E., Myers, J., & Paulson, P.
(2008). The open provenance model: An overview. In Provenance and Annotation of
Data and Processes (pp. 323-326). Springer Berlin Heidelberg.

	1 Introduction
	2 Software development still in trouble
	3 Building software
	4 The essential problems of software
	5 Ubiquitous Organizations
	6 TOPO – Global Vision
	7 Ontological aspects of TOPO
	8 Complementary elements
	9 Incremental formalization – putting it all together
	10 Conclusion

